#

- (1) Page 25 26 #1 24 all
- (2) Page 33 34 #7 -21 odd, 23 28 all
- (3) Page 33 34 #8 20 Even, Page 35 #40 44
- (4) Page 60 61 #1 8 all #13 23 odd
- (5) Page 67 68 #7 16 all
- (6) Page 68 69 #17 22 all, #37 43 odd
- (7) Page 74 75 #1 4; #7 13 odd, #15 23 odd, 27
- (8) Page 74 75 #8 14 Even; 16-24 Even, 28, #33 35
- (9) Page 81 #1 8; 9, 12, 15, 21, 23
- (10) Page 81 82 #10, 11, 13, 14, 16, 22, 24
- (11) Page 87 #1 18
- (12) Page 87 88 #19 28
- (13) Page 93 94 #1 13 all, 15, 17, 21, 23
- (14) Page 93 95 #14, 16, 18, 25 28
- (15) Page 101 #1 20 All

Geometry Notes 1.5 Coordinate and Noncoordinate Geometry

Noncoordinate geometry (aka Euclidean geometry) – the geometry of ______ mathematicians.

<u>Coordinate ge</u>	ometry (aka analytical g	<u>eometry)</u> - was developed in the 17 th century	and has the
advantage of u	using in th	e exploration of geometric relationships. It u	ises the
	to study the	of segments, lines, planes and oth	er figures.
<u>Real number li</u>	<u>ine</u>	system where points have a	_ coordinate.
<u>Coordinate pla</u>	ane –	system in which points have	_ coordinates.
<u>Slope</u> – used te	o describe the	of a line	
(1)	<u>Formula</u> :	<i>m</i> =	
(2)	Parallel Lines:	slope	
(3)	Perpendicular lines:	slope or	$m_1 \cdot m_2 = -1$
<u>Coplanar</u> – poi	ints, lines, segments and	l other figures that	_ plane.
<u>Collinear</u> – poi	ints, segments, or rays th	nat line.	

Midpoint Formula - Let $A(x_1, y_1)$ and $B(x_2, y_2)$ be points in a coordinate plane.

Midpoint of
$$\overline{AB} = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$$

Geometry Notes 2.1 Exploring Patterns

Reasoning in geometry: First 2 steps are ______. The third step is when you are ______ it.

- (1) Look for a _____
- (2) Make a conjecture a ______ as to what you ______ is happening
- (3) Verify the conjecture use logical reasoning to ______ that it is true in _____ cases.

Important "Definitions": The first three are words that are commonly understood ______ being defined. Some statements such as "a point lies on a line" and "point C lies between A and B" are also not defined.

- (a) Point
- (b) Line
- (c) Plane
- (d) Line segment (or just segment) consists of ______ and all of the points that lie in ______.

<u>**IMPORTANT**</u> The _____ of line segment \overline{AB} is AB.

(e) Ray – consists of ______ (A) and all of the points on the line \overrightarrow{AB} that lie on the ______ of A that B lies. If C is between A and B, then \overrightarrow{CA} and \overrightarrow{CB} are ______ rays.

(f) Collinear – points, segments or rays that ______.

- (g) Angle consists of two different rays that have the ______. The ______. The _______. The sides of the angle. The angles that consists of the rays \overrightarrow{AB} and \overrightarrow{AC} is denoted by $\angle BAC$, $\angle CAB$, or by $\angle A$. The point A is the _______ of the angle. The measure of $\angle A$ is denoted by $m \angle A$.
 - (i) acute -
 - (ii) right -
 - (iii) obtuse -
 - (iv) straight -

A

* In geometry, unless specifically stated otherwise, angles are assumed to have a measure that is greater than 0 degrees and less than or equal to 180 degrees. Every nonstraight angle has an interior and an exterior.*

(h)	interior – a point is on the interior of an angle if it of the angle.	_ the points that lie on	
		9 •	
		A	
(i)	exterior – lies on the of the sides of the angle.		
(j)	adjacent – two angles are adjacent if they	, but have	
	41 is to 42		
	42 is to 43		
	41 is to 43		

Geometry Notes 2.2 The Structure of Geometry

Postulates, Theorems, Corollaries, Definitions and Formulas

Postulate 1 – Ruler Postulate: The points on a line can be matched, one-to-one, with the set of real numbers. The real number that corresponds with a point is the coordinate of the point. The distance, AB, between two points, A and B, on a line is equal to the absolute value of the difference between the coordinates of A and B.

יידייי				чш
1	2	3	4	5

Postulate 2 – Segment Addition Postulate: If B is between A and C, then AB + BC = AC

Postulate 3 – Protractor Postulate: Let \overrightarrow{OA} be a ray and consider one of the half-planes, P, determined by the line \overrightarrow{OA} . (The half plane P does not contain the line \overrightarrow{OA} .)

The rays of the form \overrightarrow{OD} , where D is in P, can be put in one-to-one correspondence with the real numbers between 0 and 180 inclusive. If C and D are in the half plane P, then the measure of $\angle COD$ is equal to the absolute value of the difference between the real numbers for \overrightarrow{OC} and \overrightarrow{OD} .

Postulate 4 – Angle Addition Postulate: If C is in the interior of $\angle AOD$, then $m \angle AOC + m \angle COD =$ m₄AOD

Geometry Notes 2.3 Segment and Angle Relationships

Vocabulary:

(1) Congruent Two segments are _____, $\overline{AB} \cong \overline{CD}$, if they have the same _____. (a) Two angles are _____, $\blacktriangleleft P \cong \measuredangle Q$, if they have the same _____. (b) (2) The of a segment is the point that divides the segment into A ______ is a segment, ray, line or plane that ______ a segment at its ______. (3) An ______ is a ray that divides the angle into ______ (4) (5) Perpendicular Two lines are perpendicular (\bot) if they ______ to form a ______. (a) A line is \perp to a plane if it is \perp to ______ in the plane that intersects it. (b)

***Definitions - can always be interpreted "forward" and "backward" ***

i.e. – "If two segments have the same measure, than they are \cong ." AND "If two segments are \cong then they have the same measure"

Distance Formula: Let $A = (x_1, y_1)$ and $B = (x_2, y_2)$ be points on a coordinate plane. The distance between A and B is:

AB =

(E1.) Find the distance between (-1,2) and (2,-4).

(P1.) Find the distance between (0, 4) and (2, 3).

Geometry Notes 2.4 Conditional Statements

Conditional s	tatement (aka	statement) – a typ	e of logical stater	nent that may be	
I.E.	"If you eat an ap	ple every day, then you	will not need to s	see the doctor".	
a.	A conditional s	tatement has two parts , denoted by <i>q</i> .	: the	, denoted by <i>p</i> , a	and the
b.	In symbols, the s	tatement "If <i>p</i> then <i>q</i> " is	s written as $p \Longrightarrow q$	1	
<u>Converse (of</u> I.E.	<u>a conditional state</u> This also "If you do not ne	<u>ment)</u> is formed by may be true or false. eed to see the doctor, th	en you eat an apj	_ the ple every day".	_ and the
To prove that follows for	t a conditional state cases that f	ment is, you m fulfill the	ust present an ar 	gument that the cor	nclusion
To prove that is fulfilled and	t a conditional state d the	ment is, you c is NOT fulfilled. This	only need is called a	in which the hy	ypothesis

<u>Biconditional Statement</u> – "p if and only if q" is written as $p \Leftrightarrow q$. This is equivalent to writing the ______ and its ______.

I.E. "An angle is a right angle if and only if it measures 90 degrees". {iff} Point, line, and plane postulates.

.

Postulate 5: Through any two distinct points there exists exactly one line

•

Postulate 6: A line contains at least two points

.

.

Postulate 8: A

Postulate 7: Through any three noncollinear points there exists exactly one plane

.

.

•

Postulate 9: If two distinct points lie in a plane, then the line containing them lies in the plane

.

.

.

plane contains at least three noncollinear points

Postulate 10: If two distinct planes intersect, then their intersection is a line

Geometry Notes 2.5 Reasoning with Properties from Algebra

Algebraic properties being applied to geometry:

<u>P.O.E.</u> Properties of equality – Let a, b, and c be real numbers.

 Property of Equality –	If a = b, then		
 Property of Equality –	If a = b, then		
 Property of Equality –	If a = b, then	-	
 Property of Equality –	If a = b, and c \neq 0, then		
 Property of Equality –	For any real number a,		
 Property of Equality –	If a = b, then		
 Property of Equality –	If a = b and b = c, then		
 Property of Equality –	If a = b, then a may be		for b in any
	equation or expression.		
 Property of Equality –	= ab + ac or	= ac + bc	

These are the properties we will use most often. There are other properties we will use listed on page 736 of your text under Properties of Addition and Multiplication.

Also, these properties can be used as properties of ______.

****Two geometric objects are ______ if they have the ______.****

P.O.C. Properties of

<u>Property of Congruence</u> – Any geometric object is congruent to itself.

<u>Property of Congruence</u> – If one geometric object is congruent to a second, then the second object is congruent to the first.

<u>Property of Congruence</u> – If one geometric object is congruent to a second, and the second is congruent to a third, then the first object is congruent to the third object.

Proof

- (1) An ______ in which your first goal is to convince yourself that the ______.
- (2) Your second goal is to ______ your thoughts and write them down in a way that ______.
- (3) There are different ______ of proofs
- (4) It is important to realize that ______ step in your proof should be ______ or be justified by a ______.

Geometry Notes 2.6 Deductive Reasoning

Vertical Angles (aka scissor angles) – two angles are vertical angles if their _____ form two pairs of

Linear Pair – two adjacent angles are a linear pair if their ______ are opposite rays.

<u>Complementary</u> – two angles are complementary if the ______of their measures is _____. Each angle is known as the _______ of the other.

<u>Supplementary</u> – two angles are supplementary if the _____ of their measures is _____. Each angle is known as the ______ of the other.

<u>Postulate 11 - Linear Pair Postulate</u> (aka LPP): If two angles form a linear pair, then they are supplementary, i.e., the sum of their measures is 180°

Using Deductive Reasoning

When you add a new term, theorem or postulate, you are adding more structure to geometry.

<u>Deduce</u> – being able ______ from known _____.

<u>Deductive reasoning</u> – used when you prove a theorem; by using the ______ to _____ parts of the structure.

<u>Theorem 2.1 - Congruent Supplements Theorem</u> : If two angles are supplementary to the same angle or congruent angles, then they are congruent

<u>Theorem 2.2 - Congruent Complements Theorem:</u> If two angles are complementary to the same angle or to congruent angles, then they are congruent

<u>Theorem 2.3 - Vertical Angles Theorem (aka VAT):</u> If two angles are vertical angles, then they are congruent

